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Abstract. Block diagonalisation of the Hamiltonian by an unitary transformation is an 
important theoretical tool, e.g., for deriving the effective Hamiltonian of the quasidegenerate 
perturbation theory or for determining diabatic molecular electronic states. There are 
infinitely many different unitary transformations which bring a given Hermitian matrix 
into block diagonal form. It is, therefore, important to investigate under which conditions 
the transformation becomes unique. The explicit construction of such a transformation 
and its properties is discussed in detail. An illustrative example is presented. The non- 
Hermitian case is briefly discussed as well. 

1. Introduction 

Much attention has been paid to the diagonalisation of matrices. Most of the work 
has been devoted to applications in numerous fields and to the development of efficient 
numerical procedures [ 1,2]. Recently interest has arisen in the transformation which 
block diagonalises a matrix. By a block diagonal matrix we mean a matrix which 
consists of square matrices (blocks) along its diagonal and is zero elsewhere. In the 
following we briefly discuss a few examples where block diagonalisation of matrices 
is of interest. The Born-Oppenheimer approximation leads to a basic concept for 
molecules, liquids and solids. It allows for the introduction of (adiabatic) electronic 
states and of nuclear vibrations in these states. Although valid in many cases, this 
approximation may fail in particular if the energies of two or more electronic states 
are close to each other. The Jahn-Teller [3] and Renner-Teller [4] effects are well 
known examples for such a failure. In these and other situations it is convenient and 
extremely useful to introduce so-called diabatic [ 51 electronic states which simplify 
the treatment and more naturally reflect the physics of the problem. Diabatic states 
can be obtained from the adiabatic ones by an orthogonal transformation which block 
diagonalises the Hamiltonian of the system (see [ 6 , 7 ]  and references therein). 

Another interesting example is the construction of the effective interaction between 
‘particles’. Using a block diagonalisation procedure the interaction of the one-particle 
states can be replaced by the effective interaction of only those one-particle states 
which are relevant for the problem under consideration. Such an effective Hamiltonian 
approach may simplify the problem, give additional insight and, most importantly, 
lead to effective interaction elements which can be transferable to other related systems 
[8]. Furthermore, the method may be used to justify and possibly extend semiempirical 
approaches [9] which have been successfully applied to molecules and solids. Closely 
related to the effective Hamiltonian approach is a branch of perturbation theory called 
quasidegenerate perturbation theory [ 10-131. Here, a matrix representation of the 
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Hamiltonian is transformed into two blocks, one of small dimension containing the 
relevant information about the states of interest and the other referring to all other 
states. The blocks are computed via perturbation theory. The quasidegenerate per- 
turbation theory has enjoyed applications in nuclear, atomic and molecular physics. 
Very recently the method of block diagonalisation has been used to derive an approxi- 
mation scheme to evaluate the particle-particle propagator [ 141. The resulting scheme 
offers new insights and is considerably simpler than those determined from the diagra- 
matic expansion (Feynman diagrams) of the propagator. 

The last example we would like to mention is related to the subject of random 
matrix ensembles. In physics, random matrix ensembles have been introduced to study 
spectral properties of complicated systems in particular nuclei [ 15-17]. The Gaussian 
orthogonal ensemble (GOE) is the most important one. Its members are symmetric 
matrices, the elements of which are Gaussian random variables. The ensemble is 
invariant under orthogonal transformations. Many spectral properties of this ensemble 
can be calculated analytically. In the meantime it has become clear that complex 
spectra of nuclei [17, 181, atoms [19] and molecules [20] follow the predictions of the 
GOE. It can be shown that the matrices (blocks) determined by block diagonalising 
GOE matrices again constitute a GOE [21]. This enables us to establish an interrelation 
between matrix Hamiltonians of realistic systems and the GOE. 

In contrast to the diagonalisation of a Hermitian matrix, there are infinitely many 
transformations which bring such a matrix into block diagonal form (even if the 
dimensions of the blocks and the assignment of the eigenvalues to each block are 
specified). The relevant question immediately arises whether there exist simple physi- 
cally appealing conditions under which the transformation to block diagonal form is 
uniquely defined. A major part of this work is devoted to the detailed answer of this 
question. Particular attention is paid to the explicit construction of the transformation 
(using these conditions only) and to the discussion of its properties. An illustrative 
example is also presented. The main emphasis is put on unitary transformations, but 
non-unitary ones are discussed as well. 

2. Theory 

2.1. General 

We consider a Hermitian matrix H which is block diagonalised by a unitary matrix T 

A" = T+HT. (1) 

The Hermitian block diagonal matrix A" has square d, x d ,  matrices A",,, n = 1, 
2 , .  . . , N, along its diagonal and is zero elsewhere. The main aim of this work is to 
determine conditions for selecting T for a given, but arbitrary, choice of the d,.  To 
be precise we put, without loss of generality, the eigenvalues A i ,  i = 1,2 ,  . . . , dim(H), 
of H in a desired specific order, for instance in the order of increasing size: Ai+, 3 hi .  
By choosing the same ordering of eigenvalues also for the block diagonal matrix A", 
it is then uniquely defined which eigenvalues of H are contained in each of the blocks 
A""". 

The secular equation of H in matrix notation 

HS = SA 
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defines the unitary eigenvector matrix S and the diagonal matrix A of eigenvalues A i .  
The unitarity conditions StS = SS' = 1, where 1 is the unit matrix, together with (2), 
do not allow the unique definition of S. Each eigenvector (column of S) can still be 
multiplied by an arbitrary phase factor. In particular, if H or a part of it is diagonal 
from the outset, we may, without loss of generality, choose S or the corresponding 
part of it to be a unit matrix. Clearly, the same phase convention should also apply 
to the eigenvector matrix Ft of the transformed matrix SE". By writing 

SE"Ft = F'A (3 )  

one easily finds, using (1) and (2), that 

T= SF (4) 

where F is a unitary block diagonal matrix. Similarly to SE" we view F and generally 
A (A = S, H, A, T, . . .) as a supermatrix, the elements of which are d ,  x d ,  matrices 
F,,,, and A,,,,, respectively. Since F is unitary and block diagonal, we have F,,F:, = 
FL,F,, = 1 ,, and F,, = 0 for n # m. Whenever it is unambiguous we shall drop in the 
following the index n from the d, x d ,  unit matrix 1 ,,. The secular equation ( 3 )  actually 
gives rise to a set of secular equations SE",,FA, = F:,A,,, for n = 1,2,  . . . , N. For later 
use we define here the matrix SBD which is the block diagonal part of S, i.e., 

L 

Equation (4) describes the most general transformation which block diagonalises 
H. The term S first brings H into the diagonal form and the subsequent application 
of F yields any of the possible block diagonal forms. Apart from being unitary, the 
matrices F,,, n = 1, 2 , .  . . , N, are arbitrary. Here, we are led to the question whether 
there exist elementary conditions which uniquely determine the F,, and thus the 
transformation T. By an elementary condition we mean a condition put forward by a 
very simple and transparent requirement which, in meaningful applications, will usually 
be considered a 'must'. In this work we shall consider two very different types of 
elementary conditions. The first one naturally arises from the field of quasidegenerate 
perhrbation theory and effective Hamiltonians and is discussed in 0 2.2. The second 
one, discussed in 0 2.3, is of more general relevance, being related to common transfor- 
mation properties of operators.. 

2.2. Least action of the unitary transformation 

The unitary matrix T brings the Hermitian matrix H into block diagonal form. Once 
the required block structure is defined, i.e. for each block the dimension d,,  a space 
of d,  eigenvectors of H and a space of d ,  basis set vectors, (4) gives the general form 
of the transformation matrix T. Beyond this form, we want T to change the original 
matrix H as little as possible. In other words, the resulting block diagonal matrix H 
should be, except for being block diagonal, similar to the original matrix H in the 
sense that T is as close as possible to the unit matrix 1. Mathematically we may require 

IIT-I /I =minimum (6) 
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where /JAll denotes the Euclidean norm of A. (The use of norms other than the 
Euclidean one is discussed at the end of $2.3 . )  The condition ( 6 )  is a very weak 
condition motivated by the idea that the only action that T should perform is to bring 
H into block diagonal form. Equation (4) ensures the block diagonal form and the 
condition (6) guarantees that T ‘does nothing’ otherwise. 

There are infinitely many transformations T which block diagonalise H. We shall 
see below that the condition (6) suffices to uniquely determine T. Before proving this 
statement we briefly discuss the consequences of (6) from the point of view of 
quasidegenerate perturbation theory. In perturbation theory the matrix H is decom- 
posed into the sum of a simple, usually diagonal, matrix and an interaction matrix. 
A specific eigenvalue and the corresponding eigenvector are expanded in power series 
in the matrix elements of the interaction matrix. To first order in the interaction this 
eigenvalue is identical to the corresponding diagonal element of the matrix H. This 
common textbook approach may be termed single-reference perturbation theory. In 
many situations one prefers to use the less common but highly interesting multireference 
perturbation theory, which is usually called quasidegenerate perturbation theory. 
Instead of considering the expansion of a single eigenvalue, one may expand simul- 
taneously a set of eigenvalues. This is done by formally first block diagonalising H 
and subsequently expanding Sn,, or more precisely, its elements, in a power series. 
Diagonalisation of S,, then provides the eigenvalues of interest. The convergence of 
the perturbation expansion is the main concern of quasidegenerate perturbation theory. 
To first order in the interaction the matrix Snn is identical to the corresponding block 
of the original matrix H. Second- and higher-order terms provide corrections to this 
block of H which eventually, in the case of convergence, will add up to give S,,. 
Clearly, the best convergence is obtained if these correction terms are as small as 
possible. Equation (6) presents the best condition on the transformation H + S which 
achieves this goal since T is as close as possible to unity. 

We may now present the following theorem. 

Theorem 1 .  Let S denote the eigenvector matrix of the Hermitian matrix H and assume 
that the block diagonal part of S, S B D ,  is non-singular. The unitary matrix T which 
block diagonalises H is then uniquely defined by the condition that it is as close as 
possible to a unit matrix, i.e. 

IIT- 1 11 = minimum. 

The result is 

Pro05 Using (4) one finds 

IIT-I 1 1 2  = Tr[(Tt - l ) (T-1)]  = 2 Tr 1 -Tr(FS) -Tr(FtSt) 

where Tr A is the trace of A. Since F is a block diagonal matrix, we have 
N 

Tr( FS)  = Tr( FSBD) = Tr(Fn,Sn,) 
n = l  

( 9 )  

and the condition (6) splits into a set of analogous conditions on each block of F: 

l1F,,,,Snn - 1 1 1  = minimum. ( loa)  
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It is also clear that the minimum of the RHS of (8) is equivalent to the maximum of 
Tr(FS)+Tr(FtSt) and analogously for each block of F: 

Tr(F,,S,,) +Tr( F',,S',,) = maximum. ( lob)  

S,, = UDV' (1 la)  

S,,S',, U = UD2 (1lb)  

S',,S,,V = VD2 (1lc)  

We decompose S,, according to the polar decomposition [ l ]  

where U and V are the unitary eigenvector matrices of S,,SA, and SA,S,,, respectively, 

and D is a diagonal matrix with elements D,, i = 1 , 2 , .  . . , d, ,  where the Df are the 
common eigenvalues of the above matrices. Since S,, is assumed to be a non-singular 
matrix, we may choose the phases of the column vectors of U and V such that all the 
D, are positive real numbers. In this way UVt is uniquely defined. 

We now have 
dt> 

Tr(F,,S,,) = Tr( V'F,,UD) = 1 A,,D, (12a) 

A = VtF,,U (12b) 

, = 1  

where the A,, are the diagonal elements of the matrix A. Since A is unitary, i.e. /A,,I 1 
and D, > 0, it follows from the condition (10) that A = 1. Hence, F,, takes on the 
appearance 

F,,, = VU'=  S~n(Sn,S',,)-"2. (13) 

This relation, together with (4), concludes the proof of theorem 1 .  

The above theorem, and in particular the result (7) ,  deserves some comments. If SBD 
and thus at least one of the S,, is a singular matrix, i.e. one or several eigenvalues 
Di = 0, then the result F,, = VUt shown on the LHS of (13) still fulfils the condition 
( 6 )  and is, in fact, the general solution. However, the product VUt is now no longer 
uniquely defined, since the choice of the phases of the eigenvectors corresponding to 
the vanishing eigenvalues is arbitrary. In practical situations one should try to avoid 
singular S,,, since such matrices do not contain sufficient information on the eigenvec- 
tors of H (see discussion below). A perturbative expansion of T certainly diverges if 
S,, is singular. 

Several different unitary transformations T and correspondingly block diagonal 
matrices H' have been suggested in the literature, all in the context of quasidegenerate 
perturbation theory. Some straightforward algebra shows that our result (7 )  coincides 
with that of des Cloizeaux [ l l ]  and with that used by Brandow [22]. A series of 
different results have been discussed which can be obtained via generalised Van Vleck 
transformation (see a recent paper by Svercek and Hubac [23] and references therein). 
Clearly, these results do not fulfil the elementary condition that T is as close as possible 
to unity (see also the next section). 

The eigenvector matrices of H and H' are S and Ft, respectively. Since the 
transformation T fulfils the condition ( 6 )  which implies that it brings H into block 
diagonal form but has as little as possible effect otherwise, it can be expected that S 
and Ft are as similar as possible. Indeed, Klein [24] has shown that for des Cloizeaux's 
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result the eigenvectors of H and &' are 'as similar as possible'. In the following we 
briefly discuss this relevant finding in the context of the present work. That an 
eigenvector of H and the corresponding one of &' are as similar as possible means 
that the scalar product of eigenvectors of both matrices to the same eigenvalue takes 
on its maximum. We refer to this scalar product as the overlap of the vectors in 
question. All eigenvalues should be treated on the same footing and, therefore, we 
ask for the mean overlap of the eigenvectors of &' and the corresponding ones of H 
to take on its maximum. The mean overlap, MO, of the eigenvectors of &', which are 
columns of F', and those of H, which are columns of S, is given by 

1 
dim( H )  

MO( F', S) = - Tr( FS). 

From the proof of theorem 1 one readily finds that the maximum of the mean overlap 
of Ft and S (if assumed to be real) follows from the condition (6). Moreover, as 
IIF' -SI/ = IIT- 1 1 1  holds, the condition (6) of least action of the unitary block diagonalis- 
ing transformation is equivalent to the requirement that the eigenvectors of H and &' 
are as similar as possible. Again, since only the mean value and not individual overlaps 
are involved, the latter requirement is a very weak one. Hence, it is satisfactory to see 
that this requirement suffices for uniquely determining the transformation T in a 
constructive way as shown in the proof of theorem 1. 

We have introduced the condition (6) of least action of the unitary transformation 
T. One might assume that then H and &' are as similar as possible according to 

IIH -HI1 =minimum (15) 
or, instead, that (15) stated as a condition is superior to condition (6). Without going 
into details we note that both assumptions are wrong and present a simple example 
illustrating this point. In our example the blocks H,,, of H are diagonal matrices 
(H,, = c,1, where the c, are real constants) and the H,,,, n # m, are non-vanishing 
arbitrary matrices. This leads to an expression for IIH -&'[I which is totally independent 
of T or &' and hence gives no hint how to construct T. 

2.3. Least information for the unitary transformation 

The elementary condition discussed in the preceding subsection has been motivated 
by the idea of least action of the unitary transformation T and quasidegenerate 
perturbation theory. On the other hand, one may ask whether a transformation to 
block diagonal form can be uniquely derived on the ground of general transformation 
properties of T alone. We first write the matrix equation (1) in operator notation: 

which is always possible, since the matrices T, H and &' uniquely define the operators 
f, fi and 2 once a basis 4'={4p} is specified. The matrix H can now be written as 
H = { H g  = (4PIfi14?)}, and similar expressions hold for T and &'. Let +'= {+:} be a 
basis of eigenstates of fi. The eigenvector matrix S of H is the representation of +' 
with respect to 4'. Since S = {Sik = (4pI+ok) =A(4Plil+:)}r we may equivalently consider 
S as the representation of the unit operator 1 with respect to the bases 4' and 4' and 
indicate this by writing S(+', $'). From T=SF it immediat5ly follows that F =  
{Fki = ($El TI4p)) which implies that F is the representation of T with respect to the 
bases $' and 4'. We indicate this by writing F($', 4') and note that T =  F(4', 4'). 
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Dejnition. Let F( (I,, 4 )  and S( 4, (I,) be the matrix representations of the operators f 
and i, respectively, with respect to bases 4 and (I, (see above). T is fully determined 
by S if a prescription g exists such that 

F((I,, 4 )  = g ( S ( 4 ,  (I,)) (17 )  

is valid for all bases 4 and (I, for which F((I,, 4 )  is block diagonal. 

Let us now consider a basis change 4 + 6 and (I, + 6 defined as usual by unitary 
transformations X and Y, respectively?. From the definitions of F and S we immediately 
find 

F($, 4) = Y'F((I,, 4)X ( 1 8 a )  

( 1 8 b )  sti ,  6, = X ' S ( 4 ,  (I,)Y. 
If T is fully determined by S, we may insert (18) into (17) and obtain 

Y ' g ( S ( 4 ,  (I,)))( = d X ' S ( 4 ,  (I,)Y). (19 )  
Note that this relation is valid for all block diagonal unitary matrices X and Y and, 
as we shall prove below, suffices to uniquely determine the prescription g and hence 
the block diagonalising transformation matrix T. 

Before stating our second theorem, we would like to briefly explain why we consider 
the condition that T is fully determined by S to be an elementary condition. T should 
block diagonalise H. The only information given to us is the knowledge of H and our 
choice of the block structure. Hence, we would like to construct T using only this 
information. All information concerning H is contained in its eigenvalues and eigenvec- 
tors. The eigenvector matrix S contains the information on the eigenvectors as well 
as the information on the block structure (ordering and grouping of the eigenstates 
{(I,;} and basis states {+;} into blocks is described by the columns and rows of S, 
respectively). While the eigenvalues of H are invariant quantities and do not depend 
on the specification of an underlying basis 4' to define I?, the eigenstates {(I,!} do 
depend on this specification. We may thus consider the eigenvalues as fixed and S as 
the only remaining quantity which determines T. 

Theorem 2. Let S be the eigenvector matrix of a Hermitian matrix H. For a given 
block structure let SBD, which is the block diagonal part of S, be non-singular. Assume 
the phase convention that the eigenvector matrix of a diagonal matrix is a unit matrix. 

For each H there exists exactly one matrix T which transforms it into the block 
diagonal matrix &'=TtHT with the prescribed block structure such that T is fully 
determined by S. 

ProoJ The transformation property (19 )  is the keystone in this proof. Since F, X and 
Y have identical block diagonal form, we may consider each block n separately: F,,, 
Xn, and Y,,,. In particular it follows that F,, depends on S,, and not on the other 
blocks of S. Introducing for convenience the shorthand notation F = F(S) for (17), 
we may restate (19 )  in the shorthand notation 

YLnFnn(Sm)Xnn = Fnn(XLnSnnYnn). (20) 

+ F is a unitary block diagonal matrix. Only those bases I$ and $ are allowed which preserve this block 
diagonal structure of F. It  follows that the transformation matrices X and Y in (18) must be block diagonal 
as well. 
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Choosing X,, = U and Y,, = V taken from the polar decomposition of S,, = UDV‘, 
see ( l l ) ,  we obtain 

Fnn(Sn,) = VF, , (D)U+.  (21) 

The matrix F i , ( D )  is to be considered as the eigenvector matrix of a matrix &,,, 
originating from a matrix H which has an eigenvector matrix with a diagonal block 
S,,. Inserting a diagonal unitary matrix A with diagonal elements exp(i6,) for X’,,, 
or Y,, and setting the other matrix equal to 1 leads, together with S,, = D, to 

F,,,(DA) =A’F, , (D)  (22) 

Fnn(AD)  = F,,(D)A’.  (23) 

Since A D  = D A ,  it is clear that F, , (D)  is also a diagonal matrix, and being unitary 
its diagonal elements are phase factors. As an eigenvector matrix of some &‘,,, we 
may set F,,(D) = l,, by our phase convention. It follows from (21) that F,,(Sn,) = VU’ 
which completes our proof. 

Remark. Although theorems 1 and 2 start from very different points of view, both lead 
to the same unique block diagonal matrix and 

T = SS LD( S B D S  LD) 

Theorem 1 can now easily be understood in the context of the more general theorem 
2. It was shown in the proof of theorem 1 that the minimum principle (6) leads to a 
unique F minimising 11 SF - 1 11 for the Euclidean norm. Since S is fixed in this process, 
the resulting matrix T = SF is fully determined by S. In combining both theorems we 
can now show that the minimum principle (6) is not restricted to the use of the Euclidean 
norm. This principle yields the result (7)  for any norm, provided minimising IIT- 111 
uniquely defines T and the norm 1 1  All chosen is invariant under unitary transformations 
of the matrix A. If the norm chosen is such that there is more than one T minimising 
IIT-lI1, then the result (7) is one of the solutions of (6). 

Withouth resorting to the phase convention, the transformation property (19) leads 
to a set of possible transformation matrices which can compactly be classified by (21) 
with a diagonal and unitary matrix F, , (D) .  Using (19) we may rewrite (21) to take 
on the appearance 

F( S) = S’,D( S B D S  kD)-”*F(  ( S B D S L D ) 1 ’ 2 ) .  (24) 
The set of matrices F ( S )  which fulfil the transformation property (19) is obtained by 
multiplying the unique result of theorem 2 from the right by the same matrices, but 
now as a function of ( S B D s ’ , D ) ’ ’ * .  Introducing the phase convention that the eigenvec- 
tor matrix of a diagonal matrix is unity, one arrives at F ( ( S B D S k D ) ” * )  = 1 .  

It is somewhat surprising that a trivial and non-restricting phase convention suffices 
to make F unique. To have a better understanding of this point we show that, if only 
real matrices are involved, the phase convention can be dropped. For this purpose 
we assume that, if H is already in a block diagonal form as required, the transformation 
leaves this matrix as it is, i.e. T = 1 and H =a@. Consequently, F ( l )  = 1 .  Since F, , (D)  
is an orthogonal and diagonal matrix, its elements are 1 or - 1 ,  i.e (F , , , (D) )o  = 
6,, sgn[f( Dl , D2,  . . . , Dd,, )], where f is some unknown function. Assuming F,,( D )  or, 
more precisely, its elements to be continuous functions of the D,, it immediately follows 
that F , , ( D ) = l  and thus, from (24), F ( ( S B D S ; D ) ” ’ ) = l .  If the functions are non- 
continuous, F is non-continuous in S and, in particular, quasidegenerate perturbation 
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theory is inapplicable. For complex matrices the situation is more subtle and F ( S )  is 
not uniquely determined when the phase convention is dropped. Then (21) or, 
equivalently, (24 )  is the general result. A simple example for the additional matrix is 
F((SBDS&,)'l2) = exp[ia(SBDSLD-l 13, where a is an arbitary real number. 

2.4. A few useful properties 

The elements of the block diagonal matrix calculated via theorems 1 and 2 are given 
by 

ay",, = ~ ~ , , ( ~ n n ) ~ n , , ~ n n ( ~ , , , , )  ( 2 5 a )  

F n n  (Sflfl) = st,n(sn,sI,n) - 1'2. (25b)  

Every non-singular matrix can be uniquely decomposed [ l ,  21 into a product A B of 
a unitary matrix A and a Hermitian matrix B. Interestingly, the matrix FA,, is the 
unitary matrix resulting from the decomposition of the block SA,,: S;,, = F,,,,(S,,,,S~n)1'2. 

The matrix F,, can be rewritten to have many different appearances. One form of 
particular usefulness is obtained from (25b)  by multiplying it from the right with 
1 = (SnnS~n)-1/2(S,nS~n)l'2: 

~ f l f l ( f % f l )  = ~;;(snn~I,n)1'2. (25c )  
With this form the transformation matrix T takes on a particularly simple appearance 
in the important case of N = 2. Writing SSt = 1 in block form we find that 

T = U(UtU)-"* ( 2 6 0 )  
where 

1 +x+x O )  
U = (  -x+ ' x) 1 u q + o " '  

and X = - (S21S;; ) t  = Sl2S;;. It should be noted that in order to compute T and thus 
ay" it is not necessary to know all the eigenvectors of H as may be concluded by 
expression ( 7 ) .  According to (26 )  T can be obtained from the matrix X which is 
expressible by the eigenvectors corresponding to the eigenvalues of only one of the 
blocks of &. This is of practical relevance in particular if the dimension of one of 
ay"l1 and ay"22 is small. We refer to § 3 for an illustrative example. 

2.5. The non-Hermitian case 

Until now we have discussed the situation of Hermitian matrix H to be block 
diagonalised by a unitary transformation T. If .&' should not be necessarily Hermitian, 
T need not be unitary and we may define .&' according to the following transformation: 

T-~HT = H. ( 2 7 0 )  
The eigenvector matrix Ft  of at' in the Hermitian situation cannot become identical to 
S B D  which is, in general, a non-unitary matrix. The best possible result was produced 
by theorem 1 and given in ( 7 ) .  In the non-Hermitian case the eigenvector matrix F-' 
of H can become identical to SBD. The best result along the ideas behind theorem 
1 is to put the eigenvector matrix of A?' equal to SBD. This immediately leads via ( 4 )  
to 

T=SS&. ( 2 7 6 )  
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More precisely: because of (4)  we have IIT- 111 = /IF - S’ll which obviously takes 
on its minimum at F = S i D .  Inspection of (27a)  shows that F-l is the eigenvector 
matrix of &‘ and hence the result (27b) strictly follows from theorem 1 if &‘ need not 
be Hermitian. Although of different appearance, the result (27b) coincides with that 
first introduced by des Cloiseaux [ l l ] .  Here, this result is easily derived from the 
elementary condition IIT-1 1 1  =minimum. In the case of N = 2 the explicit form of T 
in (27b) is helpful in straightforwardly obtaining T =  U, where U has been given in 
(26b) (see also 0 3). 

Comparing the result (27b) with that in (25c )  for a unitary T, we may write 

Tu = Tn,,(T~uTnu)-1’2.  (28) 

The unitary transformation matrix Tu is uniquely obtained from the A B decomposi- 
tion (see text above (25c)) of the non-unitary one T,,,,. This finding can, of course, be 
stated only after Tu has been uniquely derived via theorem 1 or/and 2. 

It is worth noting that T in (27b) and thus also F = S i b  fulfil the transformation 
property (19) as is the situation in the Hermitian case. Contrary to the Hermitian case, 
where (19) uniquely defines the block diagonalising transformation, this transformation 
is not uniquely obtained by requiring (19) to be valid if F is not unitary. Equation 
(21) is still valid, but since the diagonal matrix F,,,,(D) appearing there is not unitary, 
it can have infinitely many appearances. Choosing F,,,(D) = D-’  readily leads to 
F = Sib. For F, , (D)  = D-2,  for instance, we find F = S&(SBDSLD)-1’2 which also 
fulfils the invariance conditions (19). Another interesting non-unitary example is 
F = SLD, which is obtained for the choice F,,,,(D) = D. Any choice of F,,,(D) leads to 
a transformation T which fulfils (19) .  In view of this finding for the non-Hermitian 
case it is interesting to see that the phase convention (see 9 2.1 or theorem 2) suffices 
to uniquely define the transformation in the Hermitian case (once the transformation 
property (19) is used, of course). 

3. An illustrative example 

The investigation of a simple non-trivial example facilitates some of the findings of 
the preceding section. Schucan and Weidenmuller [25] studied the explicit construction 
of an energy-independent effective interaction and paid special attention to the three- 
dimensional case. The effective interaction obtained is non-Hermitian. We shall study 
the same example in the framework of the present theory, determining thereby the 
non-Hermitian as well as the Hermitian results. 

The matrix 

is to be transformed into a block diagonal matrix &‘, where rEDll  is a two-dimensional 
matrix and H2* is a one-dimensional matrix. Of course, A = &‘22 is an exact eigenvalue 
of H. We choose A to be the eigenvalue originating from E 3 ,  i.e. A + E3 for VI,  V2+ 0. 
The matrix SI1 will be expressed in terms of the elements of the original matrix H 
and A. The unitary matrix T =  U(UtU)-1’2 which transforms H into &‘ is given in (26). 
In particular we notice that the matrix X ,  which gives U and thus T, is fully determined 
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by the eigenvector of H corresponding to the eigenvalue A. We define 

and notice that the third column of U is proportional to the above-mentioned eigenvec- 
tor of H: 

One readily finds 

v2 
x2 = - 

A - E l  A - E* 
VI 

XI  =- 

which completes the determination of U, see (26b). 
The non-Hermitian block diagonal matrix may be obtained via (27a),  which in this 

case is H =  U-IHU. Instead of evaluating U-’, we make use of the interesting fact that 
the blocks along the diagonal of U-IHU and of HU are identical. This immediately gives 

0 

where the subscript ‘NH’ indicates the non-Hermitian case. The result (31) is equivalent 
to the one found by Schucan and Wiedenmuller [25] who considered real matrix 
elements V, and V,. 

The Hermitian block diagonal matrix H = T’HT can, of course, be found using the 
results (30) and (31) and the general relation 

&f = (UtU)”2H”NH(UtU)-”2. (32) 

The calculation, although straightforward, is quite lengthy in spite of the simple 
structure of (u+u)*~’*: 

(33a) 
0 bIl2 + IX2l2 

(utu)*I’2= 1 + xTx2 b 2 I 2  

where 

The calculation becomes very simple once it is noticed that the non-Hermitian matrix 
(31 )  can be written as 

0 0  
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This leads to the final result which takes on the following appearance: 

where the 'correction' matrix C is 

tXIXi(lX212 - IX1l2) 0 
(34b) 

0 O 1  [ O  0 

IXIX2I2 

c = fXTX2(IX212-/X112) -Ix1x212 

The Hermitian block diagonal matrix &' is obtained as half the sum of the non- 
Hermitian version &"H and its HC plus a correction matrix. While H N H  is, for a 
fixed value of A, of quadratic order in V, alp contains terms up to infinite order in V.  
It should be remembered, however, that A itself actually is a complicated function of 
the VI and V,. Remark: since the matrices U%, &"H and &' are block diagonal 
matrices, one can perform all calculations for each block separately. For the present 
example we have perferred to perform the computation with the full matrices in order 
to show explicitly their block diagonal form. 

4. Summary 

The unitary matrix T which transforms the matrix H into block diagonal matrix alp can 
be uniquely determined by imposing elementary conditions. If we have no special 
requirements concerning the transformation, it is natural to demand that the only 
action that T should perform is to bring H into block diagonal form, i.e. T should be 
as close to unity as possible. Interestingly, this very weak condition already defines 
uniquely the matrix T and thus also H. To fulfil this condition is also of relevance 
for perturbation theory. Since T is as close as possible to unity, the correction terms 
which are to be calculated by a perturbation expansion of T are as small as possible. 

In a second more general approach the consequences of another elementary 
condition are studied. The condition is that only the information contained in H and, 
of course, the given block form should be used to construct T and thus the block 
diagonal matrix ay". This very weak condition alone does not uniquely determine T. 
We rather find an interesting limited set of possible transformations which fulfil this 
condition. The trivial phase convention, that the eigenvector matrix of a diagonal 
matrix is put equal to 1, then uniquely determines T out of this set of possible 
transformations. The resulting T coincides with that of the first approach. It is 
remarkable that two very different elementary conditions give rise to the same result 
for the case of unitary transformations. This also underlines the significance of the 
transformation derived. 

If T is not unitary, the first condition again leads to a unique result while the second 
condition is fulfilled for a wider class of matrices. Several interesting properties of T 
are investigated. In particular a useful representation of this matrix is presented for 
the case where at' consists of two blocks only. This representation is explicitly used 
to compute dP in closed form for a simple but non-trivial example. 
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